A Filtration of the Sally Module and the Associated Graded Ring of an Ideal
نویسنده
چکیده
Let (R;m) be a Noetherian local ring and let I be an R-ideal. The associated graded ring of I, G = grI(R), plays a significant role in the study of resolution of singularities. Its relevance lies upon the fact that it represents algebraically the exceptional fiber of the blowup of a variety along a subvariety. A commonly addressed issue is to find numerical conditions that imply lower bounds on the depth of G . In [7, 8] and [3], for instance, this depth has been measured by using the Hilbert coefficients of I. To better explain these results, let us introduce some notation: An ideal J I is called a reduction of I if Ir+1 = JIr for some integer r. The least such r is called the reduction number of I with respect to J, and denoted rJ(I). If R is Cohen– Macaulay with infinite residue field and I is an m-primary ideal, then any minimal (with respect to inclusion) reduction of I is generated by a regular sequence. The Hilbert–Samuel function of I is the numerical function HI(n) = λ(R=In) (where λ( ) denotes length) that measures the growth of the length of R=In for all n 1. If d denotes the dimension of R, it is well-known that for n 0, HI(n) is a polynomial in n of degree d
منابع مشابه
Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملTopics on the Ratliff-Rush Closure of an Ideal
Introduction Let be a Noetherian ring with unity and be a regular ideal of , that is, contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. The Ratliff-Rush closure of is defined by . A regular ideal for which is called Ratliff-Rush ideal. The present paper, reviews some of the known prop...
متن کاملGraded Prime Ideals Attached to a Group Graded Module
Let $G$ be a finitely generated abelian group and $M$ be a $G$-graded $A$-module. In general, $G$-associated prime ideals to $M$ may not exist. In this paper, we introduce the concept of $G$-attached prime ideals to $M$ as a generalization of $G$-associated prime ideals which gives a connection between certain $G$-prime ideals and $G$-graded modules over a (not necessarily $G$-graded Noetherian...
متن کاملON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS
Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...
متن کاملGraded r-Ideals
Let $G$ be a group with identity $e$ and $R$ be a commutative $G$-graded ring with nonzero unity $1$. In this article, we introduce the concept of graded $r$-ideals. A proper graded ideal $P$ of a graded ring $R$ is said to be graded $r$-ideal if whenever $a, bin h(R)$ such that $abin P$ and $Ann(a)={0}$, then $bin P$. We study and investigate the behavior of graded $r$-ideals to introduce ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999